Exam 2-Math 210

1. (20 points) Use the $\epsilon-\delta$ definition to show that

$$
\lim _{x \rightarrow 3} x^{2}+2 x+1=16 .
$$

2. (20 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{ll}
x & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

(a) Show that $f(x)$ has a limit at $x=0$
(b) Show that f does not have a limit at c for $c \neq 0$.
3. (a) (20 points) Let

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \notin \mathbb{Q}
\end{array} .\right.
$$

Show that $f(x)$ is discontinuous everywhere in $[0,1]$.
(b) Give a function $f:[0,1] \rightarrow \mathbb{R}$ that is discontinuous for every $x \in[0,1]$ while $|f|$ is continuous for every $x \in[0,1]$.
4. (20 points) Show that the equation $x=\cos x$ has a solution on the interval $\left[0, \frac{\pi}{2}\right]$. (Hint: Use the Intermediate Value Theorem).
5. (20 points) Show that $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $[1, \infty)$ while it is not uniformly continuous on $(0, \infty)$.

